ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
NEUP honors young ANS members with R&D awards
Each year, the Department of Energy’s Nuclear Energy University Program (NEUP) recognizes graduate and undergraduate students for their innovative nuclear energy research. The winners of the Innovations in Nuclear Energy Research and Development Student Competition (INSC) receive honoraria along with travel and conference opportunities, including the chance to present their publications at the annual American Nuclear Society Winter Conference & Expo.
Eugene L. Wachspress
Nuclear Science and Engineering | Volume 3 | Number 2 | February 1958 | Pages 186-200
Technical Paper | doi.org/10.13182/NSE58-A25460
Articles are hosted by Taylor and Francis Online.
A method for determining effective cross sections for geometrically thin absorbing regions in multigroup calculations is described. The effective absorption cross section in multigroup calculations provides a smooth transition from the usual diffusion theory cross section for low absorption slabs to the λtr extrapolated end-point condition for black slabs. In effect, the average flux between mesh points of the difference equation grid is related to the fluxes at the mesh points. Self-shielding effects are accounted for by material cross-section rather than difference equation modification. Application of the theory to lattice calculations is discussed, and comparisons are made with other methods for limiting cases.