ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
A. dos Santos, G. S. de Andrade e Silva, A. G. Mendonça, R. Fuga, A. Y. Abe
Nuclear Science and Engineering | Volume 151 | Number 2 | October 2005 | Pages 237-250
Technical Paper | doi.org/10.13182/NSE05-A2543
Articles are hosted by Taylor and Francis Online.
TORT, an SN three-dimensional transport code, is employed for the analysis of the inversion point of the isothermal reactivity coefficient of the IPEN/MB-01 reactor. The analyses are performed in companion NJOY, AMPX-II, and TORT systems considering the data libraries ENDF/B-VI.8, JENDL3.3, and JEF3.0. The analyses reveal that for this peculiar problem, there is a need to convert all the computer codes to DOUBLE-PRECISION as well as to increase to seven the number of digits of the ANISN library generated by XSDRNPM. Contrary to the traditional diffusion theory codes, TORT keff results are very sensitive to the number of both fine and broad groups. For instance, the traditional and very well known two- and four-group structure, largely utilized in several diffusion codes, produced simply unacceptable keff results. The highest deviation between calculated and experimental values found for the inversion point was -4.48°C. At first glance, there appears to be a significant discrepancy. However, in terms of reactivity coefficient, this discrepancy means a deviation of -0.90 ± 0.05 pcm/°C, which indicates that the calculational methodology and related nuclear data libraries meet the desired accuracy (-1.0 pcm/°C) for the determination of this parameter for thermal reactors.