ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. W. Boyle, H. A. Mahlman
Nuclear Science and Engineering | Volume 2 | Number 4 | July 1957 | Pages 492-500
Technical Paper | doi.org/10.13182/NSE57-A25414
Articles are hosted by Taylor and Francis Online.
Concentrated thorium nitrate solution has been proposed as a blanket material in power-breeder reactors. The radiation stability, especially of the nitrate group, is therefore of considerable importance. The radiation-induced decomposition of thorium nitrate solutions was studied as a function of concentration, type of radiation (fission recoils, pile radiations, gamma rays), temperature, and total energy absorbed. The principal products were H2 and O2 from decomposition of the water, and N2, O2, and oxides of nitrogen from decomposition of the nitrate. Hydrogen yield decreased with increasing thorium nitrate concentration, a behavior similar to that for uranium solutions. Nitrogen yield was independent of temperature, but increased with increasing nitrate concentration and with increasing linear energy transfer along the paths of the ionizing particles. The 100-ev yield of N2 in 2.73 molal solution was 0.06 for fission particle decomposition, 0.006 for pile radiation (mixed fast neutrons and γ rays) and 0.001 for γ radiation alone. The oxide of nitrogen produced with the largest yield was N2O and amounted to about ten per cent of the N2 yield. In-pile autoclave measurements indicated little radiation-induced back reaction of the nitrogen.