ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Ku Young Chung, Chang Hyo Kim
Nuclear Science and Engineering | Volume 151 | Number 2 | October 2005 | Pages 212-223
Technical Paper | doi.org/10.13182/NSE05-A2541
Articles are hosted by Taylor and Francis Online.
As an efficiency enhancement numerical scheme of transient nonlinear nodal calculations, a three-grid correction scheme (3GCS) using a modified W cycle based on three grid structures of three-dimensional (3-D) four-node-per-assembly (4N/A), 3-D 1N/A, and two-dimensional (2-D) 1N/A is developed. Its computational efficiency is compared with a single-grid biconjugate gradient stabilized (BICGSTAB) iteration scheme in popular use in terms of 3-D 4N/A nonlinear analytical nodal method solutions to Nuclear Energy Agency Committee on Reactor Physics pressurized water reactor rod ejection benchmark problems. It is shown that in computational efficiency, the 3GCS excels the BICGSTAB iteration method using preconditioners such as Jacobi, incomplete lower and upper (ILU), and 3-D block incomplete lower and upper (BILU3D) preconditioners. It is also shown that coarse-grid residual equations based on the 3-D 1N/A grid structure can predict temporal truncation errors as accurately as the 3-D 4N/A fine-grid residual equation but with considerably less overhead computing time for variable time-step size control calculations by a step doubling method. In addition, incorporation of preconditioners into the 3GCS is shown to enhance further efficiency of the nonpreconditioned 3GCS. From these results, it is concluded that the temporal adaptive 3GCS employing coarse-grid residual equations for temporal step-size control as well as the preconditioner like the BILU3D can provide a very efficient iterative solution scheme for transient nonlinear nodal calculations.