ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. H. Kittel, S. Greenberg, S. H. Paine, J. E. Draley
Nuclear Science and Engineering | Volume 2 | Number 4 | July 1957 | Pages 431-449
Technical Paper | doi.org/10.13182/NSE57-A25408
Articles are hosted by Taylor and Francis Online.
Three corrosion-resistant uranium-base alloys, U-3 weight per cent Nb, U-5 weight per cent Zr-1½ weight per cent Nb, and U-3.8 weight per cent Si (U3Si) were irradiated to burnups of 0.1 atomic per cent or less. Observations were made of irradiation-induced length changes in specimens of the alloys as influenced by the method of fabrication and heat treatment, and of changes in aqueous corrosion resistance resulting from irradiation. It was found that the uranium-niobium alloy was unsuitable from the standpoint of dimensional and surface stability, and its corrosion resistance was destroyed by irradiation. The uranium-zirconium-niobium alloy could be nominally stabilized under irradiation and its corrosion resistance was destroyed by between 0.046 and 0.074 atomic per cent burnup. The uranium-silicon alloy was relatively stable under irradiation and showed no increase in corrosion rate at 290°C after 0.090 atomic per cent burnup, although cracking occurred after several days corrosion testing.