ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Comments on U.S. nuclear export controls on China
As trade negotiations are in the works between the United States and China, Washington, D.C., has the advantage in semiconductors but nuclear power is a different story, according to a June 9 article in the Hong Kong–based South China Morning Post.
Bernhard Blumenthal
Nuclear Science and Engineering | Volume 2 | Number 4 | July 1957 | Pages 407-426
Technical Paper | doi.org/10.13182/NSE57-A25406
Articles are hosted by Taylor and Francis Online.
Several of the contaminants of uranium can be removed or controlled by vacuum melting and liquation. The lower limits of carbon content which can be attained by liquation in urania crucibles are 225 to 250 ppm at 1195°C, 190 to 225 ppm at 1150°C, and 170 ppm at 1138°C. In magnesia crucibles the reaction 3 MgO + UC → UO2 + CO + 3 Mg proceeds to the right in a high vacuum resulting in incomplete carbon removal. Oxygen and nitrogen are rapidly removed by liquation and contents of less than 10 ppm are readily obtained. Iron and silicon are not removed by a simple melting and liquation process. Various crucible materials were investigated and the effect of addition agents such as nitrogen, tantalum, titanium, and zirconium was studied. Under optimum vacuum melting conditions a metal is produced that will contain no more than 130 to 200 ppm total impurities.