ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Bernhard Blumenthal
Nuclear Science and Engineering | Volume 2 | Number 4 | July 1957 | Pages 407-426
Technical Paper | doi.org/10.13182/NSE57-A25406
Articles are hosted by Taylor and Francis Online.
Several of the contaminants of uranium can be removed or controlled by vacuum melting and liquation. The lower limits of carbon content which can be attained by liquation in urania crucibles are 225 to 250 ppm at 1195°C, 190 to 225 ppm at 1150°C, and 170 ppm at 1138°C. In magnesia crucibles the reaction 3 MgO + UC → UO2 + CO + 3 Mg proceeds to the right in a high vacuum resulting in incomplete carbon removal. Oxygen and nitrogen are rapidly removed by liquation and contents of less than 10 ppm are readily obtained. Iron and silicon are not removed by a simple melting and liquation process. Various crucible materials were investigated and the effect of addition agents such as nitrogen, tantalum, titanium, and zirconium was studied. Under optimum vacuum melting conditions a metal is produced that will contain no more than 130 to 200 ppm total impurities.