ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Bernhard Blumenthal
Nuclear Science and Engineering | Volume 2 | Number 4 | July 1957 | Pages 407-426
Technical Paper | doi.org/10.13182/NSE57-A25406
Articles are hosted by Taylor and Francis Online.
Several of the contaminants of uranium can be removed or controlled by vacuum melting and liquation. The lower limits of carbon content which can be attained by liquation in urania crucibles are 225 to 250 ppm at 1195°C, 190 to 225 ppm at 1150°C, and 170 ppm at 1138°C. In magnesia crucibles the reaction 3 MgO + UC → UO2 + CO + 3 Mg proceeds to the right in a high vacuum resulting in incomplete carbon removal. Oxygen and nitrogen are rapidly removed by liquation and contents of less than 10 ppm are readily obtained. Iron and silicon are not removed by a simple melting and liquation process. Various crucible materials were investigated and the effect of addition agents such as nitrogen, tantalum, titanium, and zirconium was studied. Under optimum vacuum melting conditions a metal is produced that will contain no more than 130 to 200 ppm total impurities.