ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
B. R. Merk, D. G. Cacuci
Nuclear Science and Engineering | Volume 151 | Number 2 | October 2005 | Pages 194-211
Technical Paper | doi.org/10.13182/NSE05-A2540
Articles are hosted by Taylor and Francis Online.
Closed-form expressions for three-timescale approximations are developed for the one-group time-dependent P1 and P3 equations for a homogeneous multiplying medium in planar geometry with two effective groups of delayed neutrons. The development of these three-scale approximations does not rely on imposing separation of space and time. The differences between the three-scale approximations for the P1, P3, and diffusion equations, respectively, are analyzed in detail. In particular, the results obtained using the three-scale approximations for the P1 and P3 equations underscore their efficiency and accuracy, particularly for the shortest timescales and in the presence of large reactivity insertions.