ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Comments on U.S. nuclear export controls on China
As trade negotiations are in the works between the United States and China, Washington, D.C., has the advantage in semiconductors but nuclear power is a different story, according to a June 9 article in the Hong Kong–based South China Morning Post.
N. C. FRANCIS, H. HURWITZ, JR., P. F. ZWEIFEL
Nuclear Science and Engineering | Volume 2 | Number 3 | May 1957 | Pages 253-287
Technical Paper | doi.org/10.13182/NSE57-A25395
Articles are hosted by Taylor and Francis Online.
The calculation of critical parameters, neutron distributions, and adjoint functions for reflected reactors is discussed. A variational technique and a modification of the Wiener-Hopf method are described. The major application is made for the case of reactors moderated by hydrogen, in which case the slowing-down kernel must be introduced either as a numerical function or as a polynomial fit to such a function. For the case of the polynomial fit, explicit formulas for critical size, neutron distributions, and adjoint functions have been found by the Wiener-Hopf method. A comparison with experimental results for water-moderated reactors shows discrepancies consistent with the discrepancy known to exist between the measured and calculated neutron age in water.