ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Comments on U.S. nuclear export controls on China
As trade negotiations are in the works between the United States and China, Washington, D.C., has the advantage in semiconductors but nuclear power is a different story, according to a June 9 article in the Hong Kong–based South China Morning Post.
W. PRIMAK
Nuclear Science and Engineering | Volume 2 | Number 2 | April 1957 | Pages 117-125
Technical Paper | doi.org/10.13182/NSE57-A25381
Articles are hosted by Taylor and Francis Online.
The ratio of the damage rates in graphite irradiated in the converter and VT-4 of CP-3′ are explained in terms of the different flux spectra which existed in the respective irradiation facilities. This interpretation requires that the statistical quantity of damage resulting from a scattering event involving a neutron of given energy be nearly constant above 105 ev, and this in turn implies that the statistical amount of damage produced by a carbon atom of given energy is nearly constant above 104 ev and is in agreement with Seitz's theory. Good agreement is found between the rate at which disturbances in the lattice are accumulated and the rate of carbon atom displacement calculated from Seitz's theory, but this is not considered especially significant since the parameters had originally been adjusted to fit experimental data.