ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
W. PRIMAK
Nuclear Science and Engineering | Volume 2 | Number 2 | April 1957 | Pages 117-125
Technical Paper | doi.org/10.13182/NSE57-A25381
Articles are hosted by Taylor and Francis Online.
The ratio of the damage rates in graphite irradiated in the converter and VT-4 of CP-3′ are explained in terms of the different flux spectra which existed in the respective irradiation facilities. This interpretation requires that the statistical quantity of damage resulting from a scattering event involving a neutron of given energy be nearly constant above 105 ev, and this in turn implies that the statistical amount of damage produced by a carbon atom of given energy is nearly constant above 104 ev and is in agreement with Seitz's theory. Good agreement is found between the rate at which disturbances in the lattice are accumulated and the rate of carbon atom displacement calculated from Seitz's theory, but this is not considered especially significant since the parameters had originally been adjusted to fit experimental data.