ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
W. E. Parkins
Nuclear Science and Engineering | Volume 12 | Number 1 | January 1962 | Pages 91-105
Technical Paper | doi.org/10.13182/NSE62-A25376
Articles are hosted by Taylor and Francis Online.
Analysis of observations on surface film formation has indicated a single process to be primarily responsible. This process involves transport of particles present in the coolant to the surface, and attachment there through the establishment of chemical bonds. Brownian motion is the principal mechanism bringing partiales into contact with the surface, but many factors can be important in determining whether a given encounter will lead to permanent attachment of a particle. One of these factors, frequently present in reactor cores, is a surface electrostatic force caused by the flow of electrical currents. These currents are primarily the result of beta electron and photoelectron emission. Details of the various electrical parameters are analyzed for situations encountered in heterogeneous and homogeneous reactors. It is shown that the surface electrostatic force is critically dependent on the current density crossing the coolant-film interface, and on the electric resistivity of the surface of the film in contact with the coolant. Recommendations are made for means to prevent the formation of objectionable surface films. Attention is directed to the fact that the homogeneous slurry type of reactor combines conditions which can lead to the deposition of fuel bearing films on in-core surfaces.