ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
W. E. Parkins
Nuclear Science and Engineering | Volume 12 | Number 1 | January 1962 | Pages 91-105
Technical Paper | doi.org/10.13182/NSE62-A25376
Articles are hosted by Taylor and Francis Online.
Analysis of observations on surface film formation has indicated a single process to be primarily responsible. This process involves transport of particles present in the coolant to the surface, and attachment there through the establishment of chemical bonds. Brownian motion is the principal mechanism bringing partiales into contact with the surface, but many factors can be important in determining whether a given encounter will lead to permanent attachment of a particle. One of these factors, frequently present in reactor cores, is a surface electrostatic force caused by the flow of electrical currents. These currents are primarily the result of beta electron and photoelectron emission. Details of the various electrical parameters are analyzed for situations encountered in heterogeneous and homogeneous reactors. It is shown that the surface electrostatic force is critically dependent on the current density crossing the coolant-film interface, and on the electric resistivity of the surface of the film in contact with the coolant. Recommendations are made for means to prevent the formation of objectionable surface films. Attention is directed to the fact that the homogeneous slurry type of reactor combines conditions which can lead to the deposition of fuel bearing films on in-core surfaces.