ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
UM conducts molten salt experiment
For 2,300 hours, the molten salt pump Shaft Seal Test Facility (SSTF) operated at the University of Michigan’s Thermal Hydraulics Laboratory, according to an article from UM. The large-scale experiment was designed to evaluate shaft seal performance in high-temperature pump systems. Fewer than 10 facilities worldwide have successfully operated fluoride or chloride salts for more than 100 hours using over 10 kilograms of material.
Orrington E. Dwyer, Herbert E. Howe, Edward R. Avrutik
Nuclear Science and Engineering | Volume 12 | Number 1 | January 1962 | Pages 15-22
Technical Paper | doi.org/10.13182/NSE62-A25364
Articles are hosted by Taylor and Francis Online.
The liquid-metal-fuel reactor concept, which has received much attention in recent years, in its commonest version is a thermal breeder and employs as a fuel a dilute solution of U in molten Bi. About 28% of the nonvolatile fission products are less reactive chemically than U. This group, customarily referred to as the FPN group, is further divided into three subgroups according to the proposed methods of removal. The FPN-I's would be removed by oxidizing them to chlorides with fused salts, the FPN-II's by precipitating them directly from the liquid fuel, and the FPN-III's by reaction with Zn to form low-density intermetallic compounds which are insoluble in Bi. The FPN-II's, representing about 90% of the FPN's, would be removed continuously, while the others, because of their low yields or relatively low thermal cross sections, would be allowed to build up in the fuel for several years without causing any particular concern. Eventually, however, they would have to be removed. The FPN-I's would be removed by the same continuous process proposed for removing those nonvolatile fission products which are more reactive than U, while the FPN-III's would be removed in a batch process similar to that currently used in the refining of Bi. The following paper includes information on the rates of build-up of the several important FPN elements in the fuel, steady-state concentrations of the FPN-II elements, reactor poisoning level of the FPN's, and experimental results in support of the proposed methods of removal.