ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Josep M. Soler, Urs K. Mäder
Nuclear Science and Engineering | Volume 151 | Number 1 | September 2005 | Pages 128-133
Technical Note | doi.org/10.13182/NSE05-A2535
Articles are hosted by Taylor and Francis Online.
Reactive transport calculations simulating the interaction between hyperalkaline solutions derived from the degradation of cement and potential host rocks for repositories for low- and intermediate-level radioactive waste have been performed. Two different cases are shown: (a) The example of the planned repository at Wellenberg and (b) the modeling of the GTS-HPF experiment at the Grimsel Test Site. The GIMRT code has been used for the simulations. Mineral reactions are described by kinetic rate laws. The reaction rates for the primary minerals are based on experimentally determined rates published in the literature and geometric considerations combined with measurements regarding mineral surface areas. Relatively fast rates for the secondary minerals have been used, so the results resemble the local equilibrium solution for these minerals. In both cases, the alteration of the rock and the precipitation of secondary phases cause a reduction in the permeability of the system, which would actually be beneficial for the performance of a repository. Mineral surface area controls, to a large extent, the amount of mineral alteration and the change in permeability.