ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Quan Zhou, Rizwan-uddin
Nuclear Science and Engineering | Volume 151 | Number 1 | September 2005 | Pages 95-113
Technical Paper | doi.org/10.13182/NSE05-A2532
Articles are hosted by Taylor and Francis Online.
Stability and bifurcation analyses of boiling water reactors have been carried out using a reduced-order two-channel model developed earlier by Karve et al. To parameterize azimuthal asymmetry in core loading, an amplification factor F is introduced into the model to vary azimuthal mode feedback coefficients. Bifurcation analysis code BIFDD and numerical integration are used to analyze the reduced-order model composed of 22 modified ordinary differential equations. Results are presented for effects of azimuthal asymmetry (as parameterized by the amplification parameter F) on characteristics of oscillations. Analysis of eigenvectors corresponding to the two pairs of complex conjugate eigenvalues with the largest and second largest real parts suggests that one of these pairs is responsible for in-phase oscillations and the other for the out-of-phase oscillations.For a uniform core without azimuthal asymmetry (F = 1), as a bifurcation parameter (total pressure drop) is varied, the pair of eigenvalues corresponding to the fundamental mode first cross the imaginary axis, thus making the system unstable and leading to in-phase oscillations. However, for azimuthally asymmetric cores (corresponding to large values of F) and small inlet subcooling, the pair of eigenvalues corresponding to the first azimuthal mode, whose real part is the second largest for F = 1 case, approach the vertical axis faster (as a bifurcation parameter is varied) than those corresponding to the fundamental mode, thus becoming the dominant pair of eigenvalues. This leads to out-of-phase oscillations. Results of bifurcation analyses show that both sub- and supercritical bifurcation can occur for large as well as small azimuthal asymmetry, depending on values of other operating parameters. Changes in characteristics of oscillations (in-phase or out-of-phase; super- or subcritical bifurcation), therefore, result along the stability boundary. Numerical integrations confirm the results of stability and bifurcation analyses.