ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Quan Zhou, Rizwan-uddin
Nuclear Science and Engineering | Volume 151 | Number 1 | September 2005 | Pages 95-113
Technical Paper | doi.org/10.13182/NSE05-A2532
Articles are hosted by Taylor and Francis Online.
Stability and bifurcation analyses of boiling water reactors have been carried out using a reduced-order two-channel model developed earlier by Karve et al. To parameterize azimuthal asymmetry in core loading, an amplification factor F is introduced into the model to vary azimuthal mode feedback coefficients. Bifurcation analysis code BIFDD and numerical integration are used to analyze the reduced-order model composed of 22 modified ordinary differential equations. Results are presented for effects of azimuthal asymmetry (as parameterized by the amplification parameter F) on characteristics of oscillations. Analysis of eigenvectors corresponding to the two pairs of complex conjugate eigenvalues with the largest and second largest real parts suggests that one of these pairs is responsible for in-phase oscillations and the other for the out-of-phase oscillations.For a uniform core without azimuthal asymmetry (F = 1), as a bifurcation parameter (total pressure drop) is varied, the pair of eigenvalues corresponding to the fundamental mode first cross the imaginary axis, thus making the system unstable and leading to in-phase oscillations. However, for azimuthally asymmetric cores (corresponding to large values of F) and small inlet subcooling, the pair of eigenvalues corresponding to the first azimuthal mode, whose real part is the second largest for F = 1 case, approach the vertical axis faster (as a bifurcation parameter is varied) than those corresponding to the fundamental mode, thus becoming the dominant pair of eigenvalues. This leads to out-of-phase oscillations. Results of bifurcation analyses show that both sub- and supercritical bifurcation can occur for large as well as small azimuthal asymmetry, depending on values of other operating parameters. Changes in characteristics of oscillations (in-phase or out-of-phase; super- or subcritical bifurcation), therefore, result along the stability boundary. Numerical integrations confirm the results of stability and bifurcation analyses.