ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Gilles Youinou, Alfredo Vasile
Nuclear Science and Engineering | Volume 151 | Number 1 | September 2005 | Pages 25-45
Technical Paper | doi.org/10.13182/NSE05-A2526
Articles are hosted by Taylor and Francis Online.
If it becomes necessary to stabilize the Pu inventory before the advent of Gen IV fast reactors, then it must be multirecycled in thermal neutron reactors like pressurized water reactors (PWRs). However, because of the neutron physics characteristics of Pu, it is difficult to multirecycle it in mixed-oxide (MOX)-fueled PWRs. Indeed, since there are fewer and fewer fissile isotopes in Pu, it is necessary to compensate by increasing its content, causing it to quickly reach values where the void coefficient is positive (above 12% Pu). To avoid this, Pu must be used together with enriched U so that its degradation is compensated by an increase of 235U enrichment. Two possibilities of mixing Pu and enriched U in the same assembly are presented (homogeneously and heterogeneously). In the first, called MOX-UE, all the fuel rods are made of PuO2-UenrichedO2, whereas the second, called CORAIL, contains approximately one-third of standard MOX rods (PuO2-UtailO2) and two-thirds of UO2 rods. A variant of the CORAIL concept in which the MOX rods are substituted with inert matrix fuel rods (PuO2-CeO2) was also studied. These assemblies allow Pu to be multirecycled in standard PWRs, thus stabilizing the Pu inventory between 200 and 400 t heavy metal (for a nuclear electricity production of 400 TWh(electric)/yr, i.e., typical of a country such as France). The number of reactors loaded with Pu depends on the performances of each concept in terms of Pu burning, and it represents between 80% (CORAIL with the MOX rods) and 30% (MOX-UE with 12% Pu) of the total power. There is only a small difference regarding the needs in natural U between the Pu monorecycling option and the different Pu multirecycling options. Hence, it appears that saving U should not be offered as an incentive for multirecycling Pu in PWRs.