ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Nozomu Fujimoto, Kiyonobu Yamashita, Naoki Nojiri, Mituo Takeuchi, Shingo Fujisaki, Masaaki Nakano
Nuclear Science and Engineering | Volume 150 | Number 3 | July 2005 | Pages 310-321
Technical Paper | doi.org/10.13182/NSE03-79
Articles are hosted by Taylor and Francis Online.
Annular cores were formed in start-up core physics tests of the High Temperature Engineering Test Reactor (HTTR) to obtain experimental data for verification of design codes. The first criticality, control rod (CR) positions at critical conditions, neutron flux distribution, excess reactivity, etc., were measured as representative data. These data were evaluated with the MVP Monte Carlo code, which can consider directly the heterogeneity of coated fuel particles (CFPs) distributed randomly in fuel compacts. It was made clear that the heterogeneity effect of CFPs on keff's for annular cores is smaller than that for fully loaded cores. The measured and the calculated keff's agreed with each other with differences <1%k. The calculated neutron flux distributions agreed with the measured results. A revised method was applied for evaluation of excess reactivity to exclude the negative shadowing effect of CRs. The revised and calculated excess reactivity agreed with differences <1%k/k.