ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
The when, where, why, and how of RIPB design
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) held another presentation in its monthly Community of Practice (CoP) series.
Watch the full webinar here.
Mohamed Dahmani, Robert Roy
Nuclear Science and Engineering | Volume 150 | Number 2 | June 2005 | Pages 155-169
Technical Paper | doi.org/10.13182/NSE150-155
Articles are hosted by Taylor and Francis Online.
Recent advances in parallel software development for solving three-dimensional (3-D) neutron transport problems using the characteristics method are presented. The characteristics method solves the transport equation by collecting local angular fluxes along neutron paths. In order to be able to solve large 3-D transport problems in a reasonable time frame, the characteristics solver needs to be accelerated. After applying adequate numerical acceleration techniques, the only issue is to parallelize the solver. The parallelization of this solver is based on distributing a group of tracks, generated by a ray-tracing procedure, on several processors. Different distributing schemes and load-balancing techniques based on a calculation load model are presented. A message-passing model is used to communicate the local solutions between processes participating in solving a problem. Both analytical models of this parallel algorithm and performance analysis are presented and illustrated by several examples.