ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Mohamed Dahmani, Robert Roy
Nuclear Science and Engineering | Volume 150 | Number 2 | June 2005 | Pages 155-169
Technical Paper | doi.org/10.13182/NSE150-155
Articles are hosted by Taylor and Francis Online.
Recent advances in parallel software development for solving three-dimensional (3-D) neutron transport problems using the characteristics method are presented. The characteristics method solves the transport equation by collecting local angular fluxes along neutron paths. In order to be able to solve large 3-D transport problems in a reasonable time frame, the characteristics solver needs to be accelerated. After applying adequate numerical acceleration techniques, the only issue is to parallelize the solver. The parallelization of this solver is based on distributing a group of tracks, generated by a ray-tracing procedure, on several processors. Different distributing schemes and load-balancing techniques based on a calculation load model are presented. A message-passing model is used to communicate the local solutions between processes participating in solving a problem. Both analytical models of this parallel algorithm and performance analysis are presented and illustrated by several examples.