ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
The when, where, why, and how of RIPB design
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) held another presentation in its monthly Community of Practice (CoP) series.
Watch the full webinar here.
J. W. Eerkens
Nuclear Science and Engineering | Volume 150 | Number 1 | May 2005 | Pages 1-26
Technical Paper | doi.org/10.13182/NSE05-A2498
Articles are hosted by Taylor and Francis Online.
Explicit relations are developed to estimate isotope enrichment factors for iQF6 vapors diluted in a carrier gas G, which are isotope selectively laser-excited and flow subsonically through a wall-cooled cylindrical cell. At gas mix pressures below 100 millitorr, laser-assisted condensation repression on cold walls can induce isotope separations for some vapors at certain cryogenic temperatures. For example, for iSF6/N2 mixtures, narrow temperature "windows" are found in the 70 to 90 K region where enrichments exceed i = 33 = 1.7. For iUF6/G gas mixes, enrichment under full condensation conditions is not possible since the surface potential well (~1150 cm-1) of a UF6 condensate layer is higher than the vibration-to-translation conversion quantum of the v3 vibration (~628 cm-1). However, for UF6* adsorptions on a bare surface of F2-passivated gold with well depth of 400 cm-1 or less, initial isotope enrichments with ~ 1.1 are possible before the surface is covered with UF6 condensate. Throughputs in cold-wall isotope separations are low because of low operating pressures. For enrichments of milligrams of a radioactive isotope in nuclear medicine, this is still useful and offers a low-footprint alternative to calutron or ultracentrifuge separations. Since feed and product streams are the same, the method lends itself to multistaging, with one laser irradiating four or more chambers in series.