ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Ayumi Abe, Hidehiro Tobita, Nobuaki Nagata, Koji Dozaki, Hideki Takiguchi
Nuclear Science and Engineering | Volume 149 | Number 3 | March 2005 | Pages 312-324
Technical Paper | doi.org/10.13182/NSE149-312
Articles are hosted by Taylor and Francis Online.
Hydrogen injection has been applied as a preventive measure against the stress corrosion cracking (SCC) phenomenon in many boiling water reactors. However, it can be applied only during normal plant operation since hydrogen is usually injected into the feedwater and this system is in standby mode during start-up operations. It is estimated that the core internals are subjected to the strain rate that may cause susceptibility to SCC initiation during start-up. Therefore, it is beneficial to perform hydrogen injection during start-up as well in order to suppress SCC initiation.For this purpose, we installed an additional hydrogen injection system to be used during plant start-up at the Tokai-2 power station. This trial Hydrogen water chemistry During Start-up (HDS) system was applied following the 19th refueling and maintenance outage in December 2002. By comparing results obtained during this start-up with HDS to previous start-up data using normal water chemistry, we made the following observations. First, as the reactor water temperature increased from initial conditions up to 180°C via nuclear heating, dissolved oxygen and hydrogen peroxide concentrations decreased to levels lower than previously observed. Second, during subsequent nuclear heating, up to 250°C, the dissolved oxygen concentration did not exceed 1 ppb, and the electrochemical corrosion potential was maintained in a low range near -400 mV versus the standard hydrogen electrode.