ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Michael Martin Nieto, A. C. Hayes, William B. Wilson, Corinne M. Teeter, William D. Stanbro
Nuclear Science and Engineering | Volume 149 | Number 3 | March 2005 | Pages 270-276
Technical Paper | doi.org/10.13182/NSE05-A2493
Articles are hosted by Taylor and Francis Online.
The feasibility of using the detection of electron antineutrinos produced in fission to monitor the time dependence of the plutonium content of nuclear power reactors is discussed. If practical, such a scheme would allow worldwide, automated monitoring of reactors and, thereby, the detection of certain proliferation scenarios. For GW(electric) power reactors, the count rates and the sensitivity of the antineutrino spectrum (to the core burnup) suggest that monitoring of the gross operational status of the reactor from outside the containment vessel is feasible. As the plutonium content builds up in a given burn cycle, the total number of antineutrinos steadily drops; and this variation is quite detectable, assuming fixed reactor power. The average antineutrino energy also steadily drops, and a measurement of this variation would be very useful to help offset uncertainties in the total reactor power. However, the expected change in the antineutrino signal from the diversion of a significant quantity of plutonium, which would typically require the diversion of as little as a single fuel assembly in a GW(electric) reactor, would be very difficult to detect.