ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
R. Klein Meulekamp, J. C. Kuijper, M. Schikorr
Nuclear Science and Engineering | Volume 149 | Number 2 | February 2005 | Pages 237-245
Technical Paper | doi.org/10.13182/NSE05-A2490
Articles are hosted by Taylor and Francis Online.
Point genetic equations are introduced. These equations are similar to the well-known point kinetic equations but characterize and couple individual fission generations in subcritical systems. Point genetic equations are able to describe dynamic behavior of source-driven subcritical systems on shorter timescales than is possible with point kinetic equations. Point genetic parameters can be used as a first-order characterization of the system and can be calculated using standard Monte Carlo techniques; the implementation in other calculational schemes seems straightforward. A Godiva sphere is considered to show the applicability of the point genetic equations in describing a detector response on short timescales. For this system the point genetic parameters are calculated and compared with reference calculations. Typical dynamic source behavior is considered by studying a transient in which the neutron source energy decreases from 20 to 1 MeV. For all cases studied, the point genetic equations are compared to full space-time kinetic solutions, and it is shown that point genetics performs well.