ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Fei Wang, Rizwan-uddin
Nuclear Science and Engineering | Volume 149 | Number 1 | January 2005 | Pages 107-114
Technical Paper | doi.org/10.13182/NSE149-107
Articles are hosted by Taylor and Francis Online.
A modified nodal integral method (MNIM) for two-dimensional, time-dependent Navier-Stokes equations is extended to three dimensions. The nodal integral method is based on local transverse integrations over finite size cells that reduce each partial differential equation to a set of ordinary differential equations (ODEs). Solutions of these ODEs in each cell for the transverse-averaged dependent variables are then utilized to develop the difference schemes. The discrete variables are scalar velocities and pressure, averaged over the faces of bricklike cells. The development of the MNIM is different from the conventional nodal method in two ways: (a) it is Poisson-type pressure equation based and (b) the convection terms are retained on the left side of the transverse-integrated equations and thus contribute to the homogeneous part of the solution. The first feature leads to a set of symmetric transverse-integrated equations for all the velocities, and the second feature yields distributions of constant + linear + exponential form for the transverse-averaged velocities. The scheme is tested on three-dimensional lid-driven cavity problems in cube- and prism-shaped cavities. Results obtained using the MNIM on fairly coarse meshes are comparable with reference solutions obtained using much finer meshes.