ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Fei Wang, Rizwan-uddin
Nuclear Science and Engineering | Volume 149 | Number 1 | January 2005 | Pages 107-114
Technical Paper | doi.org/10.13182/NSE149-107
Articles are hosted by Taylor and Francis Online.
A modified nodal integral method (MNIM) for two-dimensional, time-dependent Navier-Stokes equations is extended to three dimensions. The nodal integral method is based on local transverse integrations over finite size cells that reduce each partial differential equation to a set of ordinary differential equations (ODEs). Solutions of these ODEs in each cell for the transverse-averaged dependent variables are then utilized to develop the difference schemes. The discrete variables are scalar velocities and pressure, averaged over the faces of bricklike cells. The development of the MNIM is different from the conventional nodal method in two ways: (a) it is Poisson-type pressure equation based and (b) the convection terms are retained on the left side of the transverse-integrated equations and thus contribute to the homogeneous part of the solution. The first feature leads to a set of symmetric transverse-integrated equations for all the velocities, and the second feature yields distributions of constant + linear + exponential form for the transverse-averaged velocities. The scheme is tested on three-dimensional lid-driven cavity problems in cube- and prism-shaped cavities. Results obtained using the MNIM on fairly coarse meshes are comparable with reference solutions obtained using much finer meshes.