ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
R. van Geemert, F. Tani
Nuclear Science and Engineering | Volume 149 | Number 1 | January 2005 | Pages 74-87
Technical Paper | doi.org/10.13182/NSE05-A2478
Articles are hosted by Taylor and Francis Online.
A methodology is presented that allows a higher-order accurate treatment of system perturbations that are assumed to have a substantial magnitude and therefore also a substantial effect on flux distributions in nuclear systems. Examples are localized material choice variations, burnable poison density variations at lattice level, complete fuel assembly permutations at core level, or specific uncertainties defined in the system composition. For these cases, it is necessary to raise the accuracy of the estimated responses above what can be achieved using first-order perturbation methods only, of course preferably without having to simply pursue computationally expensive exact recalculations for each case if the effects of many variations or uncertainties are to be assessed. Focusing on the neutronics of multiplying systems (without thermal-hydraulic feedback mechanisms incorporated), the setup of a polynomial form for quantification of the flux shape change due to imposed system perturbations is pursued. In a mathematical sense, this method allows one to set up a polynomial expansion of the change in the lowest-mode solution of the neutronics eigensystem due to an imposed perturbation in the operators determining the lowest-mode solution and eigenvalue. This form features the property that the flux shape change, caused by variations in certain parameters localized in space and energy, can be expanded polynomially up to higher-order accuracy, with the imposed system composition variations themselves as functional arguments. Numerical results, showing the validity of the method, are reported, and possible application areas are discussed.