ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Taro Ueki, Forrest B. Brown
Nuclear Science and Engineering | Volume 149 | Number 1 | January 2005 | Pages 38-50
Technical Paper | doi.org/10.13182/NSE04-15
Articles are hosted by Taylor and Francis Online.
In Monte Carlo criticality calculations, source error propagation through the stationary (active) cycles and source convergence in the settling (inactive) cycles are both dominated by the dominance ratio (DR) of fission kernels. For symmetric two-fissile-component systems with the DR close to unity, the extinction of fission source sites can occur in one of the components even when the initial source is symmetric and the number of histories per cycle is more than 1000. When such a system is made slightly asymmetric, the neutron effective multiplication factor at the inactive cycles does not reflect the convergence to stationary source distribution. To overcome this problem, relative entropy has been applied to a slightly asymmetric two-fissile-component problem with a DR of 0.993. The numerical results are mostly satisfactory but also show the possibility of the occasional occurrence of unnecessarily strict stationarity diagnostics. Therefore, a criterion is defined based on the concept of data compression limit in information theory. Numerical results for a pressurized water reactor fuel storage facility with a DR of 0.994 strongly support the efficacy of relative entropy in both the posterior and progressive stationarity diagnostics.