ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Taro Ueki, Forrest B. Brown
Nuclear Science and Engineering | Volume 149 | Number 1 | January 2005 | Pages 38-50
Technical Paper | doi.org/10.13182/NSE04-15
Articles are hosted by Taylor and Francis Online.
In Monte Carlo criticality calculations, source error propagation through the stationary (active) cycles and source convergence in the settling (inactive) cycles are both dominated by the dominance ratio (DR) of fission kernels. For symmetric two-fissile-component systems with the DR close to unity, the extinction of fission source sites can occur in one of the components even when the initial source is symmetric and the number of histories per cycle is more than 1000. When such a system is made slightly asymmetric, the neutron effective multiplication factor at the inactive cycles does not reflect the convergence to stationary source distribution. To overcome this problem, relative entropy has been applied to a slightly asymmetric two-fissile-component problem with a DR of 0.993. The numerical results are mostly satisfactory but also show the possibility of the occasional occurrence of unnecessarily strict stationarity diagnostics. Therefore, a criterion is defined based on the concept of data compression limit in information theory. Numerical results for a pressurized water reactor fuel storage facility with a DR of 0.994 strongly support the efficacy of relative entropy in both the posterior and progressive stationarity diagnostics.