ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Herschel P. Smith, John C. Wagner
Nuclear Science and Engineering | Volume 149 | Number 1 | January 2005 | Pages 23-37
Technical Paper | doi.org/10.13182/NSE05-A2474
Articles are hosted by Taylor and Francis Online.
Certain reactor transients cause a reduction in moderator temperature and, hence, increased attenuation of neutrons and decreased response of excore detectors. This decreased detector response is of concern because of the credit assumed for detector-initiated reactor trip to terminate the transient. Explicit modeling of this phenomenon presents the analyst with a difficult problem because of the dense and optically thick neutron absorption media, given the constraint that precise response characteristics must be known in order to account for this phenomenon. The solution in this study was judged to be the use of Monte Carlo techniques coupled with robust variance reduction to accelerate problem convergence. A fresh discussion on the motivation for variance reduction is included, followed by separate accounts of manual and automated applications of variance reduction techniques. Finally, the results of both manual and automated variance reduction techniques are presented and compared.