ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
A. Z. Akcasu, M. M. R. Williams
Nuclear Science and Engineering | Volume 148 | Number 3 | November 2004 | Pages 403-413
Technical Paper | doi.org/10.13182/NSE04-A2466
Articles are hosted by Taylor and Francis Online.
Statistical aspects of particle transport in spatially random media in one dimension are studied analytically using the dichotomic and the binomial binary random processes as two models for the spatial randomness in the particle density. The mean and the variance of the flux are expressed in terms of the moments <U(x)n> of the stochastic propagator U(x) = exp[-z(x)], where z(x) is the optical path length. The moments <U(x)n> are rigorously calculable with the above random processes. In the case of semi-infinite media, the calculations are carried out using the one-dimensional, one-speed transport equation. In finite media, one-speed diffusion theory is used to calculate the mean and variance of the flux within the slab. In particular, the statistics of the albedo and the exit current are investigated. The mean of the local reaction rates within the slab is also calculated.