ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
A. Z. Akcasu, M. M. R. Williams
Nuclear Science and Engineering | Volume 148 | Number 3 | November 2004 | Pages 403-413
Technical Paper | doi.org/10.13182/NSE04-A2466
Articles are hosted by Taylor and Francis Online.
Statistical aspects of particle transport in spatially random media in one dimension are studied analytically using the dichotomic and the binomial binary random processes as two models for the spatial randomness in the particle density. The mean and the variance of the flux are expressed in terms of the moments <U(x)n> of the stochastic propagator U(x) = exp[-z(x)], where z(x) is the optical path length. The moments <U(x)n> are rigorously calculable with the above random processes. In the case of semi-infinite media, the calculations are carried out using the one-dimensional, one-speed transport equation. In finite media, one-speed diffusion theory is used to calculate the mean and variance of the flux within the slab. In particular, the statistics of the albedo and the exit current are investigated. The mean of the local reaction rates within the slab is also calculated.