ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Taro Ueki, Forrest B. Brown, D. Kent Parsons, James S. Warsa
Nuclear Science and Engineering | Volume 148 | Number 3 | November 2004 | Pages 374-390
Technical Paper | doi.org/10.13182/NSE03-95
Articles are hosted by Taylor and Francis Online.
In the nuclear engineering community, the error propagation of the Monte Carlo fission source distribution through cycles is known to be a linear Markov process when the number of histories per cycle is sufficiently large. In the statistics community, linear Markov processes with linear observation functions are known to have an autoregressive moving average (ARMA) representation of orders p and p - 1. Therefore, one can perform ARMA fitting of the binned Monte Carlo fission source in order to compute physical and statistical quantities relevant to nuclear criticality analysis. In this work, the ARMA fitting of a binary Monte Carlo fission source has been successfully developed as a method to compute the dominance ratio, i.e., the ratio of the second-largest to the largest eigenvalues. The method is free of binning mesh refinement and does not require the alteration of the basic source iteration cycle algorithm. Numerical results are presented for problems with one-group isotropic, two-group linearly anisotropic, and continuous-energy cross sections. Also, a strategy for the analysis of eigenmodes higher than the second-largest eigenvalue is demonstrated numerically.