ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
Taro Ueki, Forrest B. Brown, D. Kent Parsons, James S. Warsa
Nuclear Science and Engineering | Volume 148 | Number 3 | November 2004 | Pages 374-390
Technical Paper | doi.org/10.13182/NSE03-95
Articles are hosted by Taylor and Francis Online.
In the nuclear engineering community, the error propagation of the Monte Carlo fission source distribution through cycles is known to be a linear Markov process when the number of histories per cycle is sufficiently large. In the statistics community, linear Markov processes with linear observation functions are known to have an autoregressive moving average (ARMA) representation of orders p and p - 1. Therefore, one can perform ARMA fitting of the binned Monte Carlo fission source in order to compute physical and statistical quantities relevant to nuclear criticality analysis. In this work, the ARMA fitting of a binary Monte Carlo fission source has been successfully developed as a method to compute the dominance ratio, i.e., the ratio of the second-largest to the largest eigenvalues. The method is free of binning mesh refinement and does not require the alteration of the basic source iteration cycle algorithm. Numerical results are presented for problems with one-group isotropic, two-group linearly anisotropic, and continuous-energy cross sections. Also, a strategy for the analysis of eigenmodes higher than the second-largest eigenvalue is demonstrated numerically.