ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC posts hearing request notice for Belews Creek ESP application
An opportunity to request an adjudicatory hearing for Duke Energy Carolinas’ early site permit (ESP) application for the Belews Creek site in Stokes County, N.C., has been announced by the Nuclear Regulatory Commission. The notice of the opportunity was published February 9 in the Federal Register. The deadline to file a request for a hearing or petition for leave to intervene is April 10, 2026.
G. Verdú, R. Miró, A. M. Sánchez, O. Roselló, D. Ginestar, V. Vidal
Nuclear Science and Engineering | Volume 148 | Number 2 | October 2004 | Pages 256-269
Technical Paper | doi.org/10.13182/NSE04-A2456
Articles are hosted by Taylor and Francis Online.
The TRAC/BF1-VALKIN code is a new time domain analysis code for studying transients in a boiling water reactor. This code uses the best-estimate code TRAC/BF1 to give an account of the heat transfer and thermal-hydraulic processes and a three-dimensional neutronics module. This module has two options: the MODKIN option that makes use of a modal method based on the assumption that the neutronic flux can be approximately expanded in terms of the dominant lambda modes associated with a static configuration of the reactor core, and the NOKIN option that uses a one-step backward discretization of the neutron diffusion equation. To check the performance of the TRAC/BF1-VALKIN code, the Peach Bottom turbine trip transient has been simulated, because this transient is a dynamically complex event where neutron kinetics is coupled with thermal hydraulics in the reactor primary system, and reactor variables change very rapidly.