ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
Akitoshi Hotta, Minyan Zhang, Hiroshi Shirai
Nuclear Science and Engineering | Volume 148 | Number 2 | October 2004 | Pages 208-225
Technical Paper | doi.org/10.13182/NSE04-A2452
Articles are hosted by Taylor and Francis Online.
A coupled plant simulation system TRAC/BF1-ENTRÉE was applied to the Nuclear Energy Agency/National Security Council boiling water reactor turbine trip benchmark. Through regular exercise 3 and extreme scenarios 3 and 4, its adequacy and robustness were validated. It was deduced that the cross-section format and the core boundary conditions are major influential factors causing errors in three-dimensional power predictions. Power swings observed in extreme scenarios were attributed to intermittent void generation and void sweeping driven by rapid pressurization. Based on a series of sensitivity studies for extreme scenario 4, it was confirmed that neglect of in-channel direct heating causes a large positive reactivity insertion and neglect of bypass direct heating causes only a small change in reactivity effects. Specifying an integration time-step size of <1 ms is recommended for keeping the numerical error within an acceptable level. To investigate the detailed in-channel void distribution and its possible influences on the fuel thermal margin, a one-way coupled system between TRAC/BF1-ENTRÉE and the three-field subchannel code NASCA was developed. Detailed void distributions at the upper part of the core where the boiling transition will occur become sufficiently uniform during the major period of the turbine trip event. Their influences on the thermal margin seem negligible.