ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Flavio Dante Giust, Peter Grimm, Rakesh Chawla
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 292-307
Technical Paper | doi.org/10.13182/NSE12-69
Articles are hosted by Taylor and Francis Online.
Total fission rate measurements have been performed on full-size boiling water reactor fuel assemblies of type SVEA-96 Optima2 in the framework of phase III of the light water reactor (LWR)-PROTEUS experimental program at Paul Scherrer Institute. This paper presents comparisons of calculated, nodal reconstructed, pinwise total fission rate distributions with experimental results. Radial comparisons have been performed for the three axial sections of the assembly (96, 92, and 84 fuel pins), while three-dimensional (3-D) effects have been investigated at pellet level for the two transition regions, i.e., the tips of the short (one-third) and long (two-thirds) partial-length rods. The test zone has been modeled using two different code systems: HELIOS/PRESTO-2 and CASMO-5/SIMULATE-5. The former is presently used for core monitoring and design at the Leibstadt Nuclear Power Plant (KKL). The latter represents the most recent generation of codes constituting the widely applied CASMO/SIMULATE system. For representing the PROTEUS test zone boundaries, partial current ratios - derived from a 3-D Monte Carlo (MCNPX) model of the entire reactor - have been applied to the PRESTO-2 and SIMULATE-5 models in the form of two-group and five-group diagonal albedo matrices, respectively. The MCNPX results have also served as a reference high-order transport solution in the calculation-to-experiment (C/E) comparisons.It is shown that the performance of the nodal methodologies in predicting the global distribution of the total fission rate is very satisfactory. Considering the various radial comparisons, the standard deviations of the C/E distributions do not exceed 1.9% for any of the three methodologies - PRESTO-2, SIMULATE-5, and MCNPX. For the 3-D comparisons at pellet level, the corresponding standard deviations are 2.7%, 2.0%, and 2.1%, respectively.