ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Flavio Dante Giust, Peter Grimm, Rakesh Chawla
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 292-307
Technical Paper | doi.org/10.13182/NSE12-69
Articles are hosted by Taylor and Francis Online.
Total fission rate measurements have been performed on full-size boiling water reactor fuel assemblies of type SVEA-96 Optima2 in the framework of phase III of the light water reactor (LWR)-PROTEUS experimental program at Paul Scherrer Institute. This paper presents comparisons of calculated, nodal reconstructed, pinwise total fission rate distributions with experimental results. Radial comparisons have been performed for the three axial sections of the assembly (96, 92, and 84 fuel pins), while three-dimensional (3-D) effects have been investigated at pellet level for the two transition regions, i.e., the tips of the short (one-third) and long (two-thirds) partial-length rods. The test zone has been modeled using two different code systems: HELIOS/PRESTO-2 and CASMO-5/SIMULATE-5. The former is presently used for core monitoring and design at the Leibstadt Nuclear Power Plant (KKL). The latter represents the most recent generation of codes constituting the widely applied CASMO/SIMULATE system. For representing the PROTEUS test zone boundaries, partial current ratios - derived from a 3-D Monte Carlo (MCNPX) model of the entire reactor - have been applied to the PRESTO-2 and SIMULATE-5 models in the form of two-group and five-group diagonal albedo matrices, respectively. The MCNPX results have also served as a reference high-order transport solution in the calculation-to-experiment (C/E) comparisons.It is shown that the performance of the nodal methodologies in predicting the global distribution of the total fission rate is very satisfactory. Considering the various radial comparisons, the standard deviations of the C/E distributions do not exceed 1.9% for any of the three methodologies - PRESTO-2, SIMULATE-5, and MCNPX. For the 3-D comparisons at pellet level, the corresponding standard deviations are 2.7%, 2.0%, and 2.1%, respectively.