ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
Pietro Mosca, Claude Mounier, Pierre Bellier, Igor Zmijarevic
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 266-282
Technical Paper | doi.org/10.13182/NSE12-63
Articles are hosted by Taylor and Francis Online.
This paper shows two ways to improve the accuracy of the transport calculations. These improvements, implemented in the APOLLO2 code, concern the fission source calculation and the self-shielding models. The calculation of the fission source was generalized to fission spectra including an incident neutron energy dependence. The subgroup self-shielding model was updated for a mixture of resonant nuclides. Some tests on fast neutron systems like a critical sphere without reflector, a sodium-cooled cell, and a helium-cooled cell show that the use of four optimized incident macro groups for fission spectra guarantees a correct representation of the fission source.The tests on a critical sphere with a thick steel reflector and on a water-moderated mixed oxide cell prove that the subgroup self-shielding, accounting for the mutual shielding of several resonant nuclides, allows us to improve the accuracy of the neutron transport solution.