ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
American Fuel Resources requests license for N.M. uranium deconversion plant
American Fuel Resources, a provider a nuclear fuel cycle solutions headquartered in Spokane, Wash., has submitted an application to the Nuclear Regulatory Commission requesting transfer of a materials license from Idaho-based radioisotope manufacturer International Isotopes for a depleted uranium hexafluoride (DUF6) deconversion plant in Lea County, N.M.
Pietro Mosca, Claude Mounier, Pierre Bellier, Igor Zmijarevic
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 266-282
Technical Paper | doi.org/10.13182/NSE12-63
Articles are hosted by Taylor and Francis Online.
This paper shows two ways to improve the accuracy of the transport calculations. These improvements, implemented in the APOLLO2 code, concern the fission source calculation and the self-shielding models. The calculation of the fission source was generalized to fission spectra including an incident neutron energy dependence. The subgroup self-shielding model was updated for a mixture of resonant nuclides. Some tests on fast neutron systems like a critical sphere without reflector, a sodium-cooled cell, and a helium-cooled cell show that the use of four optimized incident macro groups for fission spectra guarantees a correct representation of the fission source.The tests on a critical sphere with a thick steel reflector and on a water-moderated mixed oxide cell prove that the subgroup self-shielding, accounting for the mutual shielding of several resonant nuclides, allows us to improve the accuracy of the neutron transport solution.