ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
November 2023
Latest News
Argonne assists advanced reactor development with award-winning safety software
The development of modern nuclear reactor technologies relies heavily on complex software codes and computer simulations to support the design, construction, and testing of physical hardware systems. These tools allow for rigorous testing of theory and thorough verification of design under various use or transient power scenarios.
Maria Pusa, Jaakko Leppänen
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 250-258
Technical Paper | doi.org/10.13182/NSE12-52
Articles are hosted by Taylor and Francis Online.
The Chebyshev Rational Approximation Method (CRAM) has recently been introduced by the authors to solve burnup equations, and the results have been excellent. This method has been shown to be capable of simultaneously solving an entire burnup system with thousands of nuclides both accurately and efficiently. The method was prompted by an analysis of the spectral properties of burnup matrices, and it can be characterized as the best rational approximation on the negative real axis. The coefficients of the rational approximation are fixed and have been reported for various approximation orders. In addition to these coefficients, implementing the method requires only a linear solver. This paper describes an efficient method for solving the linear systems associated with the CRAM approximation. The introduced direct method is based on sparse Gaussian elimination, where the sparsity pattern of the resulting upper triangular matrix is determined before the numerical elimination phase. The stability of the proposed Gaussian elimination method is discussed based on consideration of the numerical properties of burnup matrices. Suitable algorithms are presented for computing the symbolic factorization and numerical elimination in order to facilitate the implementation of CRAM and its adoption into routine use. The accuracy and efficiency of the described technique are demonstrated by computing the CRAM approximations for a large test case with 1606 nuclides.