ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NNSA furloughs 1,400 employees, pays contractors until end of month
After nearly three weeks of a government shutdown, the Department of Energy’s National Nuclear Security Administration has furloughed 1,400 employees and has retained 400 as essential employees who will continue working without pay.
Maria Pusa, Jaakko Leppänen
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 250-258
Technical Paper | doi.org/10.13182/NSE12-52
Articles are hosted by Taylor and Francis Online.
The Chebyshev Rational Approximation Method (CRAM) has recently been introduced by the authors to solve burnup equations, and the results have been excellent. This method has been shown to be capable of simultaneously solving an entire burnup system with thousands of nuclides both accurately and efficiently. The method was prompted by an analysis of the spectral properties of burnup matrices, and it can be characterized as the best rational approximation on the negative real axis. The coefficients of the rational approximation are fixed and have been reported for various approximation orders. In addition to these coefficients, implementing the method requires only a linear solver. This paper describes an efficient method for solving the linear systems associated with the CRAM approximation. The introduced direct method is based on sparse Gaussian elimination, where the sparsity pattern of the resulting upper triangular matrix is determined before the numerical elimination phase. The stability of the proposed Gaussian elimination method is discussed based on consideration of the numerical properties of burnup matrices. Suitable algorithms are presented for computing the symbolic factorization and numerical elimination in order to facilitate the implementation of CRAM and its adoption into routine use. The accuracy and efficiency of the described technique are demonstrated by computing the CRAM approximations for a large test case with 1606 nuclides.