ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Dimitar Altiparmakov
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 239-249
Technical Paper | doi.org/10.13182/NSE12-71
Articles are hosted by Taylor and Francis Online.
This paper presents an extension of the equivalence principle to allow distributed resonance self-shielding in a multiregion fuel configuration. Rational expansion of fuel-to-fuel collision probability is applied to establish equivalence between the actual fuel configuration and a homogeneous mixture of hydrogen and resonant absorber, which is a commonly used model to calculate library tables of resonance integrals. The main steps in the derivation are given along with the basic physics assumptions on which the presented approach relies. The method has been implemented in the WIMS-AECL lattice code and is routinely used for calculation of CANDU-type reactor lattices. Its capabilities are illustrated by comparison of WIMS-AECL and MCNP results of 238U resonance capture in a CANDU lattice cell. To determine the optimal rational expansion of the fuel-to-fuel collision probability, the calculations were carried out by varying the number of rational terms from one to six. The results show that four terms are sufficient. Further increase of the number of terms affects the computing time, while the effect on accuracy is negligible. To illustrate the convergence of the results, the fuel subdivision is gradually refined varying the number of fuel pin subdivisions from 1 to 32 equal-area annuli. The results show very good agreement with the reference MCNP calculation.