ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Nam Zin Cho, Seungsu Yuk, Han Jong Yoo, Sunghwan Yun
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 227-238
Technical Paper | doi.org/10.13182/NSE12-68
Articles are hosted by Taylor and Francis Online.
In current practice of nuclear reactor design analysis, the whole-core diffusion nodal method is used in which nodal parameters are provided by a single-assembly lattice physics calculation with the zero net current boundary condition. Thus, the whole-core solution is not transport, because the interassembly transport effect is not incorporated. In this paper, the overlapping local/global iteration framework that removes the limitation of the current method is described. It consists of two-level iterative computations: half-assembly overlapping local problems embedded in a global problem. The local problem can employ heterogeneous fine-group deterministic or continuous-energy stochastic (Monte Carlo) transport methods, while the global problem is a homogenized coarse-group transport-equivalent model based on partial current-based coarse-mesh finite difference methodology. The method is tested on several highly heterogeneous multislab problems and a two-dimensional small core problem, with encouraging results.