ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Nam Zin Cho, Seungsu Yuk, Han Jong Yoo, Sunghwan Yun
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 227-238
Technical Paper | doi.org/10.13182/NSE12-68
Articles are hosted by Taylor and Francis Online.
In current practice of nuclear reactor design analysis, the whole-core diffusion nodal method is used in which nodal parameters are provided by a single-assembly lattice physics calculation with the zero net current boundary condition. Thus, the whole-core solution is not transport, because the interassembly transport effect is not incorporated. In this paper, the overlapping local/global iteration framework that removes the limitation of the current method is described. It consists of two-level iterative computations: half-assembly overlapping local problems embedded in a global problem. The local problem can employ heterogeneous fine-group deterministic or continuous-energy stochastic (Monte Carlo) transport methods, while the global problem is a homogenized coarse-group transport-equivalent model based on partial current-based coarse-mesh finite difference methodology. The method is tested on several highly heterogeneous multislab problems and a two-dimensional small core problem, with encouraging results.