ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
E. V. Depiante
Nuclear Science and Engineering | Volume 113 | Number 3 | March 1993 | Pages 251-263
Technical Paper | doi.org/10.13182/NSE93-A24493
Articles are hosted by Taylor and Francis Online.
Part of the reactor design process is performance evaluation according to predefined criteria, including reactor stability behavior under different conditions. This work focuses on the stability characterization of a reactor system with feedback under low reactor power, low reactor coolant flow conditions. Such conditions might be encountered, for example, after a loss of flow without scram in some passively safe reactor designs. Algebraic and frequency stability-criteria-based methods are developed to find stability regions, stability boundary surface in system parameter space, and frequency of oscillation at oscillatory instability boundaries. Models are developed for the reactor, its detailed thermal-hydraulic reactivity feedback path associated with coolant outlet temperature, and decay heat. Developed stability analysis tools are applied to the system model. A unique aspect is the assessment of the influence of decay heat on stability. Other selected parameters are the following: temperature coefficient of reactivity, reactor coolant flow, and natural-circulation flow. The result is a stability boundary surface in four-dimensional system parameter space and its associated frequency of oscillation surface. Adopting model parameter values from two reactors results in system parameters within the stable region. Conditions for system parameters to remain in the stable region are identified.