ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
R. Venkataraman, R. F. Fleming, E. D. McGarry
Nuclear Science and Engineering | Volume 126 | Number 3 | July 1997 | Pages 314-323
Technical Paper | doi.org/10.13182/NSE97-A24483
Articles are hosted by Taylor and Francis Online.
A new measurement-based method has been developed to determine the photofission contribution to measured responses of fission reactions in a mixed radiation field of neutrons and photons. Using this method, reliable upper and lower bounds can be established for the photofission contributions. Knowledge of the photon energy spectrum and the photofission cross sections is not required. The method involves the measurement and calculation of spectral indices of a fission reaction relative to a reaction whose response does not include any photon contribution. The differential changes in the spectral indices are measured as well as calculated with and without a gamma-ray attenuator. The measurements include responses from both neutrons and photons, whereas the calculations include contributions from neutrons only. An equation is derived for the ratio of photofission rate to neutron-induced fission rate using the definitions of the spectral indices. From this equation, algebraic upper and lower bounds can be determined for the photofission contribution using a minimum and a maximum value for the mass attenuation coefficient of the gamma-attenuating material at all photon energies. The method was tested in the radiation field inside the Materials Dosimetry Reference Facility (MDRF), which is a National Institute of Standards and Technology reference neutron field operating at the Ford Nuclear Reactor at the University of Michigan. Established algebraic upper bounds for the photofission contributions to the 237Np and 238U fission reactions in the MDRF were found to overlap zero. Conservative statistical upper bounds were established at the la level of confidence, and these are 0.87% for the 237Np fission reaction and 0.55 % for the 238U fission reaction.