ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
S. M. Ghiaasiaan, J. R. Muller, D. L. Sadowski, S. I. Abdel-Khalik
Nuclear Science and Engineering | Volume 126 | Number 2 | June 1997 | Pages 229-238
Technical Paper | doi.org/10.13182/NSE97-A24476
Articles are hosted by Taylor and Francis Online.
Critical discharge of highly subcooled water through a cylindrical channel with a 0.78-mm inside diameter and 0.78 mm in length was experimentally studied. The range of the initial water subcooling was 76 to 200 K, and the initial water pressure was in the range 0.5 to 5.2 MPa. The measured critical mass fluxes were compared with three models appropriate for application to critical flow in small and short channels.The experimental results confirm the significant effect of pressure losses on critical discharge rates in small channels. They indicate, however, that the frictional pressure losses in cracks may be considerably larger than losses predicted by the widely used correlations for rough channels. It is shown that models and correlations based on isentropic homogeneous equilibrium flow in the channel accurately predict the critical flow data, provided that the liquid initial stagnation pressure is adequately corrected for the channel entrance pressure loss.