ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Daojie Dong, George F. Vandegrift
Nuclear Science and Engineering | Volume 126 | Number 2 | June 1997 | Pages 213-223
Technical Paper | doi.org/10.13182/NSE97-A24474
Articles are hosted by Taylor and Francis Online.
The recent progress on the alkaline peroxide processing of low-enriched uranium targets for the production of 99Mo, a parent nuclide of the widely used medical isotope 99mTc, is reported. Kinetic studies were undertaken to investigate the decomposition of hydrogen peroxide in alkaline solution in contact with a uranium metal surface. It was found that the decomposition of hydrogen peroxide essentially follows the kinetic trend of uranium dissolution and can be classified into two regimes, depending on the hydroxide concentration. In the low-base regime (<0.2 M), both the hydrogen peroxide and hydroxide concentrations affect the rate of peroxide decomposition. In the high-base regime (>0.2 M), the rate of peroxide decomposition is independent of alkali concentration. When the acid/base equilibrium between H2O2 and O2H− is taken into account, the overall rate of hydrogen peroxide disappearance can be described as a 0.25th order reaction with respect to hydrogen peroxide concentration over NaOH concentrations ranging from 0.01 to 5 M. Empirical kinetics models are proposed and discussed.