ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Martin A. Lopez de Bertodano, Jian-Feng Shi,Stephen G. Beus
Nuclear Science and Engineering | Volume 126 | Number 1 | May 1997 | Pages 108-114
Technical Paper | doi.org/10.13182/NSE97-A24462
Articles are hosted by Taylor and Francis Online.
New experimental data are obtained for pressure drop and entrainment for annular upflow in a vertical pipe. The 9.5-mm pipe has a hydraulic diameter similar to the subchannels in the fuel assemblies of water-cooled reactors. The test section has a length-to-diameter ratio of 440 to ensure fully developed annular flow. The pressure covers the range from 140 to 660 kPa. Therefore, the density ratio is varied by a factor of ∼4. This allows the investigation of the effect of pressure on the interfacial shear models. Gas superficial velocities between 25 and 126 m/s are tested, extending the range of previous data to higher gas velocities. The data are compared with well-known models for interfacial shear that represent the state of the art. Good results are obtained with the models by Wallis, and Henstock and Hanratty. When the model by Asali, Hanratty, and Andreussi is modified for the effect of pressure, the agreement is also good, and the data collapse with very little scatter. There is a close relationship between these models and mixing length theory such that the models may be viewed as correlations for the surface roughness. This points toward a more fundamental approach in terms of the interfacial structure.