ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
R. Soule, W. Assal, P. Chaussonnet, C. Destouches, C. Domergue, C. Jammes, J.-M. Laurens, J.-F. Lebrat, F. Mellier, G. Perret, G. Rimpault, H. Servière, G. Imel, G. M. Thomas, D. Villamarin, E. Gonzalez-Romero, M. Plaschy, R. Chawla, J. L. Kloosterman, Y. Rugama, A. Billebaud, R. Brissot, D. Heuer, M. Kerveno, C. Le Brun, E. Liatard, J.-M. Loiseaux, O. Méplan, E. Merle, F. Perdu, J. Vollaire, P. Baeten
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 124-152
Technical Paper | doi.org/10.13182/NSE01-13C
Articles are hosted by Taylor and Francis Online.
The MUSE program (multiplication with an external source) is in progress at the MASURCA critical facility at the Cadarache Research Center of the Commissariat à l'Energie Atomique in France. The program is dedicated to the physics studies of accelerator-driven systems in support of transmutation studies of minor actinides and long-lived fission products. It began in 1995 with the coupling of a Cf source in MASURCA and was followed by a commercial (d,T) source. In 2001, a specially constructed (d,D)/(d,T) neutron generator (GENEPI) was placed in MASURCA and the MUSE-4 program commenced.We describe the first phases of the MUSE-4 program, with data presented that were obtained up to about the summer of 2002. We present some results from the "reference" configuration, which can operate at critical. We present traverses of measured fission reaction rates, with comparison to calculations. Also in the reference configuration, we performed activation foil measurements and present these results compared to calculations.Because a major objective of the MUSE program is to test and qualify methods of subcritical reactivity measurement, we have devoted a major portion of our studies to this area. We have used classical methods (rod drop, source multiplication) to attempt to measure the subcritical level. In these early phases we studied core configurations of around keff = 0.995. Deeper subcriticality (keff = 0.96) was achieved by inserting a safety rod.In addition to the methods mentioned above, we have devoted a lot of effort to pulse neutron source, fluctuation (Rossi- and Feynman-), and transfer function methods (e.g., cross-power spectral density). We present our preliminary results of all the methods, with some discussion regarding cross comparison.