ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Hangbok Choi, Bo W. Rhee, Hyunsoo Park
Nuclear Science and Engineering | Volume 126 | Number 1 | May 1997 | Pages 80-93
Technical Paper | doi.org/10.13182/NSE97-A24459
Articles are hosted by Taylor and Francis Online.
Physics studies have been performed for the compatibility of DUPIC fuel design to the existing CANDU-6. The DUPIC fuel is made of spent pressurized water reactor fuel through a dry process, and the bundle design utilizes an advanced CANDU fuel bundle geometry that is mechanically compatible with the current fuel channel and refueling system. The characteristics of a DUPIC core are compared to the current operation limits and performances of a natural uranium core. The refueling simulations have shown that the channel and bundle powers are well below the operation limits for the two- and four-bundle shift refueling schemes. The fuel performance parameters during the refueling operation reserve enough margin to the stress corrosion cracking threshold of natural uranium fuel. With the aid of burnable poison material in the fuel, the safety performance of a DUPIC core is made comparable to that of a natural uranium core. The details of DUPIC fuel design and analysis are described.