ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Hangbok Choi, Bo W. Rhee, Hyunsoo Park
Nuclear Science and Engineering | Volume 126 | Number 1 | May 1997 | Pages 80-93
Technical Paper | doi.org/10.13182/NSE97-A24459
Articles are hosted by Taylor and Francis Online.
Physics studies have been performed for the compatibility of DUPIC fuel design to the existing CANDU-6. The DUPIC fuel is made of spent pressurized water reactor fuel through a dry process, and the bundle design utilizes an advanced CANDU fuel bundle geometry that is mechanically compatible with the current fuel channel and refueling system. The characteristics of a DUPIC core are compared to the current operation limits and performances of a natural uranium core. The refueling simulations have shown that the channel and bundle powers are well below the operation limits for the two- and four-bundle shift refueling schemes. The fuel performance parameters during the refueling operation reserve enough margin to the stress corrosion cracking threshold of natural uranium fuel. With the aid of burnable poison material in the fuel, the safety performance of a DUPIC core is made comparable to that of a natural uranium core. The details of DUPIC fuel design and analysis are described.