ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Nam Zin Cho, Yong Hee Kim, Keon Woo Park
Nuclear Science and Engineering | Volume 126 | Number 1 | May 1997 | Pages 35-47
Technical Paper | doi.org/10.13182/NSE97-A24455
Articles are hosted by Taylor and Francis Online.
The analytic function expansion nodal (AFEN) method has been successfully applied to two-group neutron diffusion problems. However, the current AFEN method cannot treat complex eigen-modes, which appear in the general multigroup equations. The AFEN method is extended such that complex eigenmodes are treated within the framework of the original AFEN method for any type of geometry. Also, a suite of new nodal codes based on the extended AFEN theory is developed for hexagonal-z geometry and applied to several benchmark problems. Numerical results obtained attest to their accuracy and applicability to practical problems.