ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NEA conference focuses on new nuclear development
More than 300 delegates from around the world attended the OECD Nuclear Energy Agency’s recent Roadmaps to New Nuclear 2025 conference in Paris, France. In attendance were representatives from governments, industry, public and private financial sectors, academia, legal firms, think tanks, and research institutions. Cohosted by the Korean government, the event focused on practical, near-term solutions to barriers facing nuclear new builds.
Mark L. Williams, R. Raharjo
Nuclear Science and Engineering | Volume 126 | Number 1 | May 1997 | Pages 19-34
Technical Paper | doi.org/10.13182/NSE97-2
Articles are hosted by Taylor and Francis Online.
A new method is developed to determine space-dependent, self-shielded cross sections for resonance nuclides with no overlapping resonances, contained in an arbitrarily shaped absorber body within some general lattice configuration. The theoretical basis for the method is discussed, and analytical expressions are presented for the space-dependent flux spectrum in the vicinity of an isolated resonance and for the space-dependent variation in the shielded resonance integral and multigroup cross section. The shielded cross-section expressions contain space-dependent, “weighted escape probabilities” that correspond to the weighted average of the energy-dependent escape probability over each energy group. The method is implemented in an assembly lattice physics code, and results are compared to those obtained with a highly accurate transport theory calculation that uses pointwise cross-section data. The method gives good agreement for the radial variation in the self-shielded cross section through a boiling water reactor fuel pellet.