ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
P. Ravetto, M. M. Rostagno, G. Bianchini, M. Carta, A. D'Angelo
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 79-88
Technical Paper | doi.org/10.13182/NSE02-10D
Articles are hosted by Taylor and Francis Online.
The mathematical foundations of the multipoint method are illustrated and the method is developed for the neutron kinetics of multiplying systems to treat physical situations in which spatial and spectral effects can play an important role in transient conditions, and hence the classical point-kinetic model can become inadequate. In the present paper the method is specifically developed for source-driven systems, through a proper adaptation of the factorization-projection technique used to derive other classic kinetic models. The results presented for some test cases show the advantages that can be attained with respect to the standard point model, even when treating relevant spatial and spectral transients. It is then shown how the technique can be inserted into a quasi-static framework.