ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
I. Pázsit, M. Ceder, Z. Kuang
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 67-78
Technical Paper | doi.org/10.13182/NSE04-A2442
Articles are hosted by Taylor and Francis Online.
In future planned accelerator-driven subcritical systems, as well as in some recent related experiments, the neutron source to be used will be a pulsed accelerator. For such cases the application of the Feynman-alpha method for measuring the reactivity is not straightforward. The dependence of the Feynman Y(T) curve (variance-to-mean minus unity) on the measurement time T will show quasi-periodic ripples, corresponding to the periodicity of the source intensity. Correspondingly, the analytical solution will become much more complicated. One can perform such a pulsed Feynman-alpha measurement in two different ways: either by synchronizing the start of each measurement block with the pulses ("deterministic pulsing") or by not synchronizing ("random pulsing"). The variance-to-mean has been derived analytically for both cases and reported briefly in previous publications. However, two different methods were used and the two cases were reported separately. In this paper we give a unified treatment and a comparative analysis of the two cases. It is found that the stochastic pulsing leads to an analytic solution that is much simpler than that for the deterministic case, and the relationship between the pulsed and continuous source is much more straightforward than in the deterministic case. However, the amplitude of the ripples, constituting a deviation of the pulsed Feynman Y curve from the smooth curve corresponding to the traditional constant source case, is much larger for the stochastic pulsing than for the deterministic one. The reasons for this are also analyzed in the paper. The results are in agreement with recent measurements, made by other groups in the European Community-supported project MUSE.