ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Hot Fuel Examination Facility named a Nuclear Historic Landmark
The American Nuclear Society recently announced the designation of three new nuclear historic landmarks: the Hot Fuel Examination Facility (HFEF), the Neely Nuclear Research Center, and the Oak Ridge Gaseous Diffusion Plant. Today’s article, the first in a three-part series, will focus on the historical significance of HFEF.
Takaaki Ohsawa, Franz-Josef Hambsch
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 50-54
Technical Paper | doi.org/10.13182/NSE04-A2440
Articles are hosted by Taylor and Francis Online.
Possible fluctuation in the delayed neutron yields (DNYs) in the resonance region was predicted on the basis of experimental data of mass distribution of fission fragments at resonances. Analyzed according to the multimodal random neck rupture model of fission, the small variations in the experimental mass distribution were attributed to fluctuations in the branching ratios to different modes of fission. Using the results of analysis of measured data for 235U and 239Pu, the DNYs were calculated for each resonance by the summation method, considering 271 precursors and evaluated data of delayed neutron emission probability. It was found that the DNYs should have local dips for 235U and spikes for 239Pu at resonances.