ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Takaaki Ohsawa, Franz-Josef Hambsch
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 50-54
Technical Paper | doi.org/10.13182/NSE04-A2440
Articles are hosted by Taylor and Francis Online.
Possible fluctuation in the delayed neutron yields (DNYs) in the resonance region was predicted on the basis of experimental data of mass distribution of fission fragments at resonances. Analyzed according to the multimodal random neck rupture model of fission, the small variations in the experimental mass distribution were attributed to fluctuations in the branching ratios to different modes of fission. Using the results of analysis of measured data for 235U and 239Pu, the DNYs were calculated for each resonance by the summation method, considering 271 precursors and evaluated data of delayed neutron emission probability. It was found that the DNYs should have local dips for 235U and spikes for 239Pu at resonances.