ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
Takaaki Ohsawa, Franz-Josef Hambsch
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 50-54
Technical Paper | doi.org/10.13182/NSE04-A2440
Articles are hosted by Taylor and Francis Online.
Possible fluctuation in the delayed neutron yields (DNYs) in the resonance region was predicted on the basis of experimental data of mass distribution of fission fragments at resonances. Analyzed according to the multimodal random neck rupture model of fission, the small variations in the experimental mass distribution were attributed to fluctuations in the branching ratios to different modes of fission. Using the results of analysis of measured data for 235U and 239Pu, the DNYs were calculated for each resonance by the summation method, considering 271 precursors and evaluated data of delayed neutron emission probability. It was found that the DNYs should have local dips for 235U and spikes for 239Pu at resonances.