ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
A look inside NIST’s work to optimize cancer treatment and radiation dosimetry
In an article just published by the Taking Measure blog of the National Institute of Standards and Technology, Stephen Russek—who leads the Imaging Physics Project in the Magnetic Imaging Group at NIST and codirects the MRI Biomarker Measurement Service—describes his team’s work using phantom stand-ins for human tissue.
Sanjay Gupta, Feroz Ahmed, Suresh Garg
Nuclear Science and Engineering | Volume 125 | Number 3 | March 1997 | Pages 362-370
Technical Paper | doi.org/10.13182/NSE97-A24281
Articles are hosted by Taylor and Francis Online.
Results are reported for the space-dependent neutron spectra and tritium breeding ratio (TBR) in a proposed Li + C blanket of a deuterium-tritium fusion reactor. The multigroup diffusion equation is solved as an eigenvalue problem for three concentrations of lithium in graphite. The effect on the value of TBR of increasing the fraction of low-energy neutrons in a completely thermalized source is studied. A comparison of neutron spectra as obtained in the Li + C and 3He + C systems is also made. The results show that TBR increases with the concentration of lithium in graphite as well as with the fraction of low-energy neutrons in the source. [Essentially the same value of TBR (= 0.277) is obtained for the Li + C system with a lithium to graphite concentration of 4 x 10-2 as for a 3He + C system with a natural density of 3He.] Moreover, TBR attains an almost constant value for assembly thicknesses greater than -20 cm. Also, if a source with an increased fraction of low-energy neutrons is used, the effect is more pronounced in the 3He + C system for the range of lithium concentrations considered.