ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Humberto E. Garcia, Richard B. Vilim, Eric M. Dean
Nuclear Science and Engineering | Volume 125 | Number 3 | March 1997 | Pages 337-347
Technical Paper | doi.org/10.13182/NSE97-A24279
Articles are hosted by Taylor and Francis Online.
The implementation of a computer-based controller for regulating reactor inlet temperature (RIT) in a pool-type power plant is described. The mathematical description of the controller is given in a companion paper. The elements of the control system are organized in a master-follower hierarchical architecture that takes advantage of existing in-plant hardware and software to minimize the need for plant modifications. Low-level control algorithms are executed on existing local digital controllers (followers) with the high-level algorithms executed on a new plant supervisory computer (master). A distributed computing strategy provides integration of the existing and additional computer platforms. The control system operates by having the master controller first estimate the secondary sodium flow needed to achieve a given RIT. The estimated flow is then used as a setpoint by the follower controller to regulate sodium flow using a motor-generator pump set. The control system has been implemented in a hardware-in-the-loop (HIL) setup and qualified for operation in the Experimental Breeder Reactor II at Argonne National Laboratory. The HIL results are provided.