ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Joel L. McDuffee, Arthur E. Ruggles
Nuclear Science and Engineering | Volume 125 | Number 2 | February 1997 | Pages 232-242
Technical Paper | doi.org/10.13182/NSE97-A24270
Articles are hosted by Taylor and Francis Online.
A model is presented for predicting the pressure gradient in partially developed subcooled boiling of water for velocities from 15 to 30 m/s and inlet peaked, nonuniform axial flux profiles with channel average flux values of 6 MW/m2. The partially and fully developed boiling regions are considered separately, however; the same general modeling technique is used for both. Several correlations for the void fraction at onset of significant void are considered, and their effect on the channel pressure drop is evaluated. The effect of nonuniform axial heat flux on the channel pressure drop is also evaluated. The model is compared with pressure drop data from the thermal-hydraulic test loop at Oak Ridge National Laboratory and is found to agree with the data within 24%.